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ABSTRACT  

All sizes of farms can benefit from satellite imagery, not only big producers. When paired with artificial 

intelligence (AI) and deep machine learning techniques, satellite photography becomes an effective tool for 

monitoring agricultural conditions and anticipating issues in the field. As a result, using satellite photos to guide 

crop farming choices can help determine when to apply nutrients and irrigation. This paper focuses on 

monitoring through satellite sensors with an emphasis on the facilities offered by the European Copernicus 

Program through Sentinel-2 satellites the crops from a farm from Calarasi County, Borcea commune.  

 

REZUMAT  

Toate dimensiunile fermelor pot beneficia de imagini prin satelit, nu numai marii producători. Atunci când este 

asociată cu inteligența artificială (AI) și tehnicile profunde de învățare automată, fotografia prin satelit devine 

un instrument eficient pentru monitorizarea condițiilor agricole și anticiparea problemelor din domeniu. Ca 

rezultat, utilizarea fotografiilor din satelit pentru a ghida alegerile agricole poate ajuta la determinarea 

momentului în care să se aplice substanțele nutritive și irigarea. Această lucrare se concentrează pe 

monitorizarea prin senzori satelitari, cu accent pe facilitățile oferite de Programul european Copernicus prin 

sateliții Sentinel-2, a culturilor de la o fermă din județul Călărași, comuna Borcea. 

 

INTRODUCTION 

 To produce more, produce better, not to pollute, not to make people sick, to remain profitable are the 

challenges that today's farmers must address. According to reports, agriculture is the largest consumer of 

water resources, accounting for 70% of the world freshwater; human consumption has tripled in the last 50 

years, and resource exploitation occurs at a rate 30% higher than nature can regenerate. In this perspective, 

the challenges of producing more with a smaller environmental impact are evident. 

 Environmental conditions such as climate, topography, soil type, and latitude determine the agricultural 

potential of a region, but technological and social factors determine how and whether this potential is realized. 

Large volumes of data from multiple sources need to be transformed into information for quick and accurate 

decision-making, and for knowledge-based action. Remote data collection, complex analyses of historical and 

real-time data, and the need for accurate predictions are all essential for a sustainable future for people, farms, 

and the environment. 

 Precision agriculture, agriculture 4.0, and digital agriculture have emerged out of the necessity to bring 

control to a sector dependent on numerous factors. Agriculture 4.0 emerged with the technologies of the Fourth 

Industrial Revolution, also known as Industry 4.0, in 2011, characterized by the use of technologies such as 

the Internet of Things (IoT), Artificial Intelligence (AI), Big Data (BD), Cloud Computing, or other smart systems 

and devices for crop and farm management (European Agricultural Machinery Association, 2016; European 

Agricultural Machinery, 2017; European Commission, 2017; European Parliamentary Research Service 

(EPRS), 2016; Zhang et al., 2020; Vladut et al., 2020). 

 Agriculture 4.0, analogous to Industry 4.0, refers to integrated networks of internal and external 

operations. This means that digital information exists for all sectors and processes of the farm; electronic 

communication with external partners, suppliers, or end consumers is also established; and the transmission, 

processing, and analysis of data are (largely) automated (Kovács et al., 2018; Khanal et al., 2020; Ukaegbu 

et. al., 2021). 

mailto:gigel.paraschiv@upb.ro


Vol. 72, No. 1 / 2024  INMATEH - Agricultural Engineering 

 766  

 Sensors are key facilitators behind the IoT concept, thanks to technological advances that have 

reduced their size and made them smarter and more cost-effective. Spatial and temporal variabilities that 

significantly impact agricultural production can be controlled mainly through two approaches: (1) a mapping-

based approach or (2) a sensor-based approach (Araújo et al., 2021, Dainelli et al, 2023). 

 In the agricultural context, Cloud Computing has gained popularity in recent years by providing (1) a 

cost-effective storage solution for data (text, images, video, etc.) that has significantly reduced the cost of data 

storage for companies; (2) intelligent computing systems to transform raw data into knowledge and further into 

quantitative analysis-based decisions; (3) a secure platform that allows the development of various forms of 

IoT. Despite numerous benefits, it comes with limitations related to data privacy and network latency (resolved 

through edge and fog computing) (Sott et al., 2021). 

 Big Data can play a key role in transforming data into added value for stakeholders in the agricultural 

chain because it can efficiently aggregate, process, and visualize large and complex datasets. Using large 

volumes from multiple sources, both in real-time and historical, with the ability to process, predict, and monitor, 

significant changes are expected in farm management and agricultural operations (Araújo et al., 2021). 

 Decision Support Systems (DSS) do not have a universally accepted definition, but according to 

European Parliamentary Research Service (EPRS), (2016), it can be defined as a human-computer system 

that uses data from various sources, aiming to provide farmers with a list of advice to support their decision-

making process under different circumstances. One of the most representative features of ADSS is that it does 

not give direct instructions or commands to farmers, as the farmer is in the position to make the final decision 

(Zhai et al., 2020). 

 Remote sensing, in general, is considered a technique to collect data remotely through instruments 

that are not in physical contact with the objects being investigated/researched/tracked/monitored. Of the entire 

electromagnetic spectrum, only a narrow range of wavelengths is used in remote sensing. These include 

energy measurements from the visible spectrum, reflected infrared, thermal infrared and microwave regions. 

The platforms used for these measurements are satellites, (UAVs) drones, unnamed ground vehicles (UGVs), 

tractors or other devices with manually operated sensors. Measurements made with sensors on tractors or 

handheld devices are called proximity sensors. 

 Satellite remote sensing today has extensive applications in various fields of activity, including 

agriculture. A large number of past constraints in the use of remote sensing methods for precision farming 

were overcome with the launch of Sentinel-2 A+B. The Sentinel-2 constellation, with an improved spatial, 

spectral and temporal lens, was specifically designed to address problems in the farming community, both 

farmers and researchers (Segarra et al., 2020). 

 The use of time series of satellite images in many applications leads to multitemporal analyses that 

depend on comparing the results between these images. In this respect, it is necessary to convert the digital 

pixel values into physical units, i.e. radiance, thus allowing an objective comparison of images and the correct 

determination of the nature and magnitude of changes during the analyzed period. This includes applications 

that rely on the use of vegetation indices. For analyses and interpretations of satellite images, as well as for 

establishing the degree of accuracy of the information obtained from them, additional data are needed that 

constitute "ground truth" (Vorovencii, 2015). 

 Among the many applications of remote sensing in agriculture, vegetation indicators (IV) are important 

tools to analyze the health of vegetation, because it allows to observe whether the growth is homogeneous or 

if the crop is subjected to some stressor. In addition, artificial intelligence models combined with remote sensing 

data and vegetation indices are used for harvest prediction or other applications related to crop nutrition, water 

stress, weed, insect or plant disease infestation, and soil properties such as organic matter content, nutrients, 

pH, and salinity (Radočaj et al., 2023, Araújo et al., 2021). 

 Plants interact with sunlight differently, which is called a spectral signature. Incident solar radiation can 

follow three paths: it can be transmitted, reflected or absorbed. The electromagnetic radiation reflected by 

plants contains information about their biophysical composition and physiological state, and can be measured 

using satellite sensors, such as those placed in ESA Sentinel-2 (Segarra et al., 2020). 

 Initially, the notion of vegetation index (VI) arose from the need to identify and delimit vegetation on 

multispectral images; this approach is based on the characteristics of spectral responses of vegetation in 

relation to other bodies on the Earth's surface (Thieme et al., 2020). VI are a subset of the category of spectral 

indices (IS) and represent one of the most widely used approaches for analyzing satellite data in the optical 

domain, for various applications.  
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 VI is based solely on the interpretation of spectral responses of objects interacting with incident solar 

radiation. The most useful spectral ranges for vegetation surveillance by remote sensing are between 600 – 

700 nm and 750 – 1350 nm. Vegetation indices are a very efficient means of monitoring and evaluating drought 

phenomena at image scale due to the possibilities of precise discrimination of vegetation, as well as 

correlations with biophysical parameters that determine the state of vegetation and turgidity such as plant 

height, foliar index, biomass, etc.  

 The Normalized Difference Vegetation Index (NDVI) is a non-linear transformation of visible (RED) 

and near-infrared (NIR) bands being defined as the difference between these two bands, divided by their sum 

(Belgiu et al., 2018, Guzinski & Nieto, 2019, Muhammad, 2019): NDVI = (NIR-RED)/(NIR+RED). NDVI is a 

"unit of measurement" of vegetation development and density and is associated with bio-physical parameters 

such as: biomass (tons/ha), foliar area index (LAI), very often used in crop growth models, percentage of 

vegetation cover of land, photosynthetic activity of vegetation. In general, NDVI values are between -1.0 and 

1.0, with negative values indicating clouds or water and positive values close to 0 indicating soil not covered 

by vegetation, high positive NDVI values indicate sparse vegetation (0.1-0.5) to dense vegetation (>0.6). 

 Indirectly, NDVI is used to estimate the effects of precipitation over a certain period, to estimate the 

vegetation status of different crops and to estimate the quality of the environment as a habitat for different 

animals, pests and diseases.  

 Related to research done considering wheat fields it must be said that Vannoppen et al. concluded 

that a negative correlation was observed between high temperatures in June for spring wheat and also for 

winter wheat, which states as a negative impact on the yield (Vannoppen et al, 2020). Also, previous studies 

proved that using dynamic monitoring of NDVI to asses wheat trials were of help and can be further used in 

forecasting yields (Duan et al, 2017; Goodwin et al, 2018).  

 Further use of NDVI as a prediction model for wheat experimental trials, is the topics studied by 

researchers which stated that it could help but it is more valuable if other agronomic traits are added. Thus, 

the results showed that the prediction accuracy was higher by 50% and lower by 10% in the root mean square 

error for wheat experimental trials in Spain (Garcia-Romero et al, 2023). 

 Also, Miller et al. studied six small grain and two corn fields using NDVI, which proved that using NDVI 

they were able to map the soil and weather conditions in order to predict the plant's variable rate (Miller et al, 

2024).  

 Considering all these factors and the continuous technological advancement, this paper utilized 

satellite technology on a farm in Calarasi county, Borcea commune, to determine the NDVI index, presenting 

the evolution of three types of crops: wheat, corn, and sunflower. The research question asked is: “What is the 

potential of satellite imagery in agriculture for monitoring and analyzing crop conditions, specifically focusing 

on the NDVI index for wheat, corn, and sunflower crops?” 

 
MATERIALS AND METHODS 

 To fulfil the objective of the work, a farm from Calarasi County, Borcea commune, was chosen. Alissa 

Farm SA operates in the combined cultivation of oilseeds and cereals industry. Alissa Farm S.A brings together 

the operations of three farms: Concordia Agro, Agricom Borcea, located in Balta Ialomiţei Island (Balta 

Borcea), and Tudor 92, located on the terrace. The three farms were spread over a geographical area, 

relatively extensive, (30 km from east to west) with differences in both climate and soil properties. The most 

striking differences appear between terrace and island soils, therefore the technologies applied also differ with 

implications on economic performance. Alissa Farm manages a total area of 13,630 ha (arable, permanent, 

and temporary area). 

 The studied farm is located in an area with special importance for Romanian agriculture, being the 

main agricultural region in the country that includes approx. 40% of the total arable areas in Romania. Out of 

the total area it administers, only an area of 701.4 ha was analyzed. According to satellite measures, the 

selected area has an area of 690.06 ha, the analyzed plots being established with Google Earth. To accurately 

determine the size and to have a high degree of accuracy of satellite images, a Trimble J5 GPS was used 

(Figure 1). For easy highlighting of plots and easy processing and interpretation of results, a system of 

notations highlighted in Figure 1b has been established. 
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a.  b.  

Fig. 1 - Plot determination using Google Earth, a. surface determination, b. plot monitoring 

 

 The measurements provided by the satellite were in the form of vector images with an area of 100 

km2, one for each of the 13 wavelengths, covering the light spectrum. The Sentinel products used are 

made available free of charge to ESA users through the Copernicus Open Access Hub environment. The 

platform was queried for products using the filter engines: Interrogated period 01.09.2019- 30.10.2020, 

Mission Sentinel – 2, the S2A* is a S2B, products S2MSISA, cloud cover [0 to 4]. 

 The search generated 97 UTM (Universal Transverse Mercator) 35TNK products that were 

downloaded. Regarding the use of satellite images in the analysis, the OGOR application was used to monitor 

the evolution of NDVI in the analyzed area. The OGOR application works according to the following protocol: 

- calculates the footprint of each product on all bands; 

- generates and records FMASK rasters at UMT level from L1C products, thus classifying clouds, 

shadows, snow, water and pixels of clear terrain with better accuracy than that available in L2A products; 

- generates and records NDVI, NDWI, and EVI rasters at UTM (Universal Transverse Mercator) level 

from L2A products. 

 Establishing in advance the coordinates of the terrain, raster images for red and green wavelength 

were used, by applying the formula of NDVI (B8-B4/B8+B4) and a map of vegetation was built at the date of 

observation. The first image downloaded was on 15.02.2020, and the following with a frequency of 5 days until 

dates 30.10.2020. In total, 65 images were analyzed from February to October 2020, 25 of which were 

removed due to cloud cover, and 40 were used for this work. 

 

Table 1  

Renaming of analyzed plots  

Den. no. Farm plot name Rename for analysis 

1 B52 A 

3 B99 B 

4 Bl00 C 

5 B95 D 

6 B96A E 

7 B96B F 

8 B102 G 

9 B102A H 

10 B103A I 

1 B52 A 

 

  

RESULTS 

 Regarding the area measured, for each plot, the deviation was calculated to ensure the accuracy 

of the measurements and to be able to accurately specify the results of the analysis. Thus, in the table 

below you can find the data on the areas of each plot of land. 
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Table 2  

Measured surface 

Plot GPS RTK (ha) Google Earth (ha) Difference (GPS- GE ha) 

A 83,09 81,00 + 2,09 

B 97,42 97,90 -0,48 

C 96,85 97,40 -0,55 

D 25,01 25,17 -0,16 

E 46,27 46,89 -0,62 

F 55,96 56,58 -0,62 

G 122,55 123,98 -1,43 

H 6,6 6,59 +0,01 

I 7,8 7,78 +0,02 

TOTAL 146 146,77 -0,77 

 

 Regarding the NDVI analysis on the terrain, the main results are highlighted in Figure 2. 

 

 

February 2020 

 

March 2020 
 

April 2020 

 
May 2020 

 
June 2020 

 

July 2020 

 

August 2020 
 

September 2020 
 

October 2020 

 

Fig. 2 - NDVI maps obtained during the analyzed period 

 

 At the same time, to compare the satellite results with those in the field, three types of crops were chosen 

(wheat, corn and sunflower) which were analyzed in terms of evolution using the NDVI index. The satellite 

images obtained in the case of wheat cultivation are shown in Figure 3. 

 

 

February 15, 2020 
 

February 27, 2020 

 

March 13, 2020 
 

March 28, 2020 
 

April 10, 2020 
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April 25, 2020 

 

May 12, 2020 

 

June 9, 2020  
June 29, 2020 

 

Fig. 3 - Evolution of NDVI for wheat on plot C (B100) 
 

 These images show the evolution during February and June, which, in terms of data obtained, can be 

seen in Figure 4 for wheat crop. 

 

Fig.4 - Wheat crop evolution of NDVI from February to July 2020 
 

 Similarly, in Figure 5, the evolution from May to September is presented for corn crop. 

 

May 12 

 

May 30 

 

June 9 

 
June 29 

 
July 14 

 

 

July 31 

 

 

August 10 

 

 

August 28 

 
 

September 27 

 

Fig. 5. NDVI evolution for corn crop. Plot D (B95). 
 

 In Figure 6, the NDVI evolution for corn crop is presented. 

 

Fig. 6 - NDVI evolution of corn crop during May - September 2020 
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April 25 
 

May 12 
 

May 30 
 

June 9 
 

June 29 

 

July 14 

 

July 31 
 

August 10 
 

August 28 

 

Fig. 7 - Evolution of the NDVI for sunflower cultivation on plot B (B99) 

 

 

Fig. 8 - NDVI evolution for sunflower from April to August 2020 

 

 Figures 7 and 8 present the satellite images and the NDVI index for the sunflower crop. 

 

DISCUSSION 

 On February 15, 2020, at the time of the first image consultation, vegetation was found on all soils 

selected for analysis (A – J) with an average NDVI of 0.47 on the entire analyzed area. Following the dynamics 

of the images over time, in March it can be observed an increase in NDVI values on plots C, G, J, and maps 

indicating an increase in chlorophyll content, while on the rest of the analyzed plots NDVI values were 

decreasing.  

 Going to the real land it was found that plots C, G, J were occupied by wheat crops. Thus, it was found 

that out of the total analyzed area, which is 690.06 ha, the area cultivated with wheat was 368.15 ha, meaning 

a percentage of 38.86%. The April 2020 analysis shows a decrease in NDVI values on all analyzed plots. The 

area under wheat (C, G, J) continued to show the highest NDVI values (mean 0.62). On the rest of the surface 

the indices were declining, with an average of 0.29 (A, B, H, I, D, E, F). 

 From the images obtained in May 2020, it can be seen that vegetation was decreasing throughout the 

analyzed area (A-J) with NDVI values of 0.34. In June, monitoring shows an increasing trend of NDVI on plots 

A, B, H, and I, reaching an average of 0.70 on June 29, 2020. On the rest of the analyzed areas, the trend is 

downward, more pronounced on the area occupied by wheat (C, G, J) where NDVI decreased to 0.30. 
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 In July, the growth trend on A, B, H, I is maintained, and NDVI maps show a maximum reached on 

July 14, 2020 when the index values were 0.82. Going to the real land, on July 31, 2020 it was found that on 

plots A, B, H, I was the sunflower crop in bloom. Therefore, it follows that out of the total analyzed area (690.06 

ha), 28.00% was occupied by sunflowers, meaning 193.27 ha. 

 Also, on the same date, it was found that wheat parcels were harvested (C, G, J), which is also visible 

on the NDVI map, which shows index values of 0.21. From the questions addressed to the farmer, it was found 

that the production on the analyzed plots was 1.5 t/ha. During the same visit, plots D, E, F were inspected and 

found to be cultivated with maize. The NDVI analysis shows that the maximum values for this crop were 

reached on July 31, 2020, with average values on plots D, E, F of 0.54. It follows that out of the total analyzed 

area of 690.06 ha, 18.64% was occupied by maize crops, i.e. 128.64 ha. 

 The analysis of August 2020 shows a decreasing trend for both sunflower (A, B, H, I) and maize (D, 

E, F) with average values of 0.45 for sunflower and 0.50 for corn. In September, plots A, B, H, I (sunflower) 

showed an average NDVI value of 0.25. From the questions addressed to the farmer, it was found out that on 

August 28, 2020 the sunflower was harvested, which is correctly indicated by NDVI maps. The average yield 

on the analyzed plots was 2.64 t/ha. NDVI indices for maize are down throughout September, averaging 0.43. 

 During the last field visit on October 03, 2020, it was found that corn plots (D, E, F) were not harvested, 

but NDVI maps showed values of 0.34. From subsequent questions addressed to the farmer, it was found out 

that corn was harvested on November 05, 2020 with an average yield of 2.5 t/ha. 

 The hardship of the year 2020 could be seen through the analysis. The 2020 production was 45% 

lower for corn than 2019, 41% lower for wheat production and 54% lower for sunflower. The decline was also 

presented in the data gathered at a national level, the drought affected the plots and could be seen throughout 

the maps obtained in the research.  

 
 
 

CONCLUSIONS 

 Developments in precision agriculture and smart farming are meant to take farm performance to 

another level. One of the tools used by the new type of agriculture is remote sensing. Remote monitoring 

offers multiple advantages to farmers through the data it provides, replacing energy -intensive, time-

consuming, and perhaps even less accurate methods of collecting field data. In this context, this paper 

focuses on monitoring through satellite sensors with emphasis on the facilities offered by the European 

Copernicus Program through Sentinel-2 satellites.  

 The multispectral satellite images provided by Sentinel-2 dedicated to agriculture have a spatial 

resolution of 10-20 m/pixel and a temporal resolution of 10 days, but the constellations (Sentinel 2A and 

2B generate images every 5 days. Spectral resolution allows the determination of the physiological 

properties of plants, which can then be calculated and transformed into vegetation indices.  

 The Normalized Difference Vegetation Index (NDVI) is an index used to determine the 

development of vegetation in the field and is possible due to chlorophyll present in leaves that absorbs 

solar radiation in the red band and reflects in the NIR (near-infrared) band.  

Calculating the difference between the two bands, the value of the NDVI index  can be obtained, which is 

strongly correlated with the health of the crop.  

 This study demonstrated the application of satellite-derived NDVI indices to effectively monitor 

and analyze crop conditions over a growing season in Calarasi County, using Sentinel -2 satellite imagery. 

 The findings underscore the value of this approach in precision agriculture by providing timely 

data that can influence farming decisions. 

• Wheat Harvest Timing: The NDVI analysis enabled the identification of the peak vegetative growth 

of wheat and the subsequent decline, indicative of the nearing harvest period. Specifically, the 

NDVI values for wheat plots showed a marked decrease in early July, suggesting the beginning 

of the harvesting activities. This temporal correlation provides a non-invasive method to monitor 

crop maturity and optimize harvest timings. 

• Sunflower and Maize Analysis: The study also tracked the growth patterns of sunflowers and 

maize, with NDVI peaks reflecting key growth stages. For sunflowers, the highest NDVI readings 

in mid-July corresponded with full bloom, observed directly during fie ld visits. Maize showed a 

gradual increase in NDVI values until late July, aligning with the critical growth phases leading up 

to grain filling. 
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• Agricultural Insights: The data revealed that the year 2020 posed significant challenges, with lower 

than average yields reported for maize, reflecting broader regional impacts of adverse weather 

conditions. This highlights the NDVI's utility in capturing the effects of environmental stressors on 

crop health and productivity. 

• Recommendations for Future Applications: The research supports the integration of NDVI 

monitoring into regular agricultural practices, providing a reliable, cost-effective tool for managing 

crop health and optimizing resource allocation. Future studies could expand on this by 

incorporating additional variables such as soil moisture levels and plant phenolog ical data to 

enhance the predictive accuracy of crop yield and health assessments.  

• Limitations: The study's scope was initially limited due to the availability and accessibility of detailed 

agricultural data, such as specific hybrids used, moisture levels, and phytosanitary measures. 

These parameters are indeed crucial for a comprehensive agricultura l assessment but often 

require ground-level data collection or detailed records that may not be readily accessible or 

available in public databases. 
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