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ABSTRACT 
The automatic detection of wheat ears in the field has important scientific research value in yield estimation, 

gene character expression and seed screening. The manual counting method of wheat ears commonly used 

by breeding experts has some problems, such as low efficiency and high influence of subjective factors. In 

order to accurately detect the number of wheat ears in the field, based on MobileNet series network model, 

deep separable convolution module and alpha channel technology, the YOLOv4 model is reconstructed and 

successfully applied to the task of wheat ear yield estimation in the field. The model can adapt to the accurate 

recognition and counting of wheat ear images in different light, viewing angle and growth period. At the same 

time, the model volume with different alpha parameters is more suitable for mobile terminal deployment. The 

results show that the parameters of the improved YOLOv4 model are five times smaller than the original model, 

the average detection accuracy is 76.45%, and the detection speed FPS is two times higher than the original 

model, which provides accurate technical support for rapid yield estimation of wheat in the field. 

 

摘要 

田间麦穗的自动检测在产量估计、基因性状表达及种子筛选等方面都具有较为重要的科学研究价值，育种专家常用
的麦穗人工计数方法存在效率低，主观因素影响较高等问题。为了精确检测田间麦穗数量，本文基于MobileNet系列
网络模型，深度可分离卷积模块及Alpha通道等技术，重构了YOLOv4模型并成功应用到田间麦穗估产任务上，模型
能够适应不同光照，视角，不同生长时期麦穗图像的准确识别和计数，同时采用不同Alpha参数的模型体积更加适应
移动终端部署。结果表明，改进型YOLOv4模型参数量较原始模型体积缩小了5倍，平均检测精度达76.45%，检测速
度FPS比原模型提升了2倍，为田间小麦快速估产提供准确的技术支撑。 

 
 
INTRODUCTION 

As one of the important food crops in the world, wheat has an annual output of 700 million tons 

(http://faostat3.fao.org/faostat-gateway/go/to/browse/Q/QC/E). With the global climate change, natural 

disasters, regional economic fluctuations and other factors, the global food demand and price are increasing 

year by year, and the food crisis facing mankind is becoming more and more serious. This poses a higher 

challenge to agricultural breeding experts. Human beings need more cold resistant and high yield crop varieties 

to increase crop yield and improve crop tolerance to biological and environmental stresses. In order to find 

new varieties with high yield and stress tolerance, many breeding experts increasingly rely on high-throughput 

phenotypic technology to measure different crop traits, so as to understand the response and adaptability of 

crops to the surrounding environment, hoping to improve crop yield and quality. The phenotypic development 

technology of high-throughput images has been experienced for nearly a decade. In the early stage, it was 

mostly through special laboratories or greenhouses. Li et al., (2017), proposed a method to detect, count and 

measure the panicles of plants under the automatic control environment. Bi et al. (2010) and Bi et al. (2011) 

measured the different morphological characteristics of potted plants through the plant imaging device in the 

special laboratory, but the effect of such potted plants on water and nutrient absorption is greatly affected by 

the laboratory environment.  
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The results are quite different from the field natural environment data. In recent years, a series of large-

scale plant phenotype image capture systems (Perez-Sanz et al., 2017; Araus et al., 2014; Montes et al., 2007), 

UAVs (Holman et al., 2016; Khan et al., 2018; Shi et al., 2016; Madec et al., 2017) and satellite remote sensing 

images (Azzari et al., 2015; Lobell et al., 2015) have emerged. These methods can capture a wide range of 

crop phenotype information, but most of them can only carry out rough statistical information, such as average 

canopy coverage and average canopy color characteristics. It is worth noting that the field situation is often 

affected by the environment such as weather, light and wind speed, which brings great difficulties to image 

acquisition and image analysis algorithms. In order to adapt to the changing experimental conditions and 

improve the robustness of the algorithm, researchers usually need to manually analyze a large amount of data. 

In this paper, tripod and single RGB camera are used to obtain real field crop images, which can capture 

high-resolution crop phenotype images. At the same time, the imaging device is simple, easy to operate and 

cost-effective, which is also convenient for the rapid implementation of breeding experiments of various 

scientific research groups. The challenge of this paper is how to extract quantitative information from these 

high-resolution images, mainly the number and density of wheat ears. The field data acquisition perspective 

of this paper selects oblique top photography instead of the common head up angle photography. Under the 

oblique angle, more phenotypic information can be obtained, involving the texture, color, shape and other 

information of wheat ears. These traits can provide data support for the application of wheat phenotype, such 

as ear count, ear area, ear texture, disease monitoring, yield estimation and so on. Using a single RGB image 

to obtain data and study the phenotype of machine vision technology has been favored by most breeders.  

Fernandez-Gallego et al. (2018) used RGB camera to obtain the image from the head up angle of the 

top of the plant canopy, and then processed it with Laplace operator and median filter algorithm to identify the 

local maximum as wheat ears, with an accuracy of 92%, but for wheat ears in different growth stages, the 

algorithm recognition rate is quite different. Alharbi et al. (2018) used Gabor filter, principal component analysis 

and K-means clustering technology, and the average recognition rate of wheat ear is 90.7%. However, this 

method is seriously limited by ear density, ear and straw color, texture and ear angle. Zhou et al. (2018) et al. 

used multispectral cameras to collect data and used the improved maximum entropy segmentation algorithm 

to identify wheat ears in the field, which achieved good results when the wheat ear density and wheat ear 

occlusion were small. 

In recent years, deep learning is gradually surpassing the previous image analysis and machine learning 

methods, and has brought significant changes in the field of plant phenotype analysis, especially the rapid 

application of convolutional neural network in image analysis tasks, such as in agricultural crop organ detection 

tasks based on target detection models such as YOLO-v3 (Gao et al., 2019), mask RCNN, Alex net (Khan et 

al., 2018), YOLO-v4 (Gong et al., 2020). Extensive research has been carried out to solve agricultural science 

problems such as plant leaf classification (Wilf et al., 2016), root structure analysis (Kumar et al., 2014; Kumar 

et al., 2015), plant stress degree measurement (Singh et al., 2016), determination of crop growth period 

(Sadeghi-Tehran et al., 2017). This paper presents a depth learning model designed to quickly detect and 

count the number of wheat ears in the field wheat ear dense image. This method relies on the wheat ear image 

training data set manually marked with rectangular box, and outputs a complete boundary box position and 

size information to detect the number of wheat ears in the unit area, so as to realize wheat yield estimation. 

Field wheat yield estimation is an important data in wheat breeding. The combination of deep learning theory 

and field wheat ear counting task has strong application value and practical significance. 

 

MATERIAL AND METHODS 

DATA ACQUISITION AND PREPROCESSING 

Data sources 

The experimental wheat ear data in this paper are from the global wheat target detection competition 

(gwhd)(https://www.kaggle.com/c/global-wheat-detection.) and the wheat experimental base of Shanxi 

Agricultural University (sxau_wheat). The images of the sxau_wheat dataset are all wheat from April to June. 

At this time, the wheat ears are relatively full, most of them are still in an upright state, and the color is more 

prominent. Finally, 11 wheat ear image subsets were obtained, a total of 3487, with a resolution of 1024 × 

1024 field wheat ear image.  

 

Data enhancement 

In order to better improve the generalization ability and robustness of the model, data enhancement on 

the original data set is performed, which is divided into offline enhancement and online enhancement. 
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1) For offline enhancement, set the random chromaticity interval of wheat ear image as (0.4-2.6), 

contrast interval as (0.6-1.6) and sharpness change interval as (0.4-4.0) for enhancement, and randomly apply 

enhancement operations such as salt and pepper noise, Gaussian blur, rotation, horizontal f lip, vertical flip and 

zoom. Fig. 1 shows the comparison of enhancement effect of wheat ear data.  

 

 

Fig. 1 - Contrast Map of Wheat Spike Image Enhancement Effect 

 

2) Online image enhancement is carried out by turning, brightness adjustment, contrast, random clipping 

and scale transformation. In order to take into account the corresponding changes of image scale 

transformation and image file and annotation file after random clipping, a random online preprocessing function 

get for real-time data enhancement is designed in this get_random_data, through the online enhancement 

before each epoch to further improve the robustness of the model. Fig. 2 shows an example of online 

enhancement of wheat ear image. 

 

Fig. 2 - Example of Online Enhancement of Wheat Spike Image 

 

OPTIMIZATION MODEL CONSTRUCTION  

Backbone feature extraction and network replacement 

YOLOv4 is one of the current YOLO series models with high accuracy, but its backbone feature 

extraction network CSPdarknet53 has the characteristics of large amount of parameters and slow model 

convergence. In this paper, the MobileNet series network is selected to replace the original CSPdarknet53 

network (Howard et al., 2017), and the specific selection of Mobilenetv1, Mobilenetv2 Mobilenetv3 is one of 

the three models to obtain effective features. The shape sizes of the three effective feature layers feat1, feat2 

and feat3 corresponding to the three models are shown in Table 1. 
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Table 1 

 Effective Feature Sizes Corresponding to Different Replacement Models 

Model Feat1 shape Feat2 shape Feat3 shape 

MobileNetV1 (52, 52, 256) (26, 26, 512) (13, 13, 1024) 

MobileNetV2 (52, 52, 32) (26, 26, 92) (13, 13, 320) 

MobileNetV3 (52, 52, 40) (26, 26, 112) (13, 13, 160) 

 

MobileNet series models are selected as the backbone feature extraction network to replace CSP-

Darknet53 network. The reconstructed models are named mnv1-YOLOv4, mnv2-YOLOv4 and mnv3-YOLOv4 

respectively. 

At this time, the replacement of the YOLOv4 backbone feature extraction network is completed, as 

shown in Table 2. After analyzing the size of the replaced model parameters, it can be found that the number 

of model parameters is reduced by nearly 30% compared with the original YOLOv4 model, effectively 

improving the detection speed of the model. 

Table 2 

 Number of Model Parameters after Backbone Network Replacement 

Model name Parameter quantity 

YOLOv4 64,429,405 

MNV1-YOLOv4 41,005,757 

MNV2-YOLOv4 39,124,541 

MNV3-YOLOv4 40,043,389 

 

PANet enhances feature extraction and network optimization 

For the PANet enhanced feature extraction network, its parameters are mainly concentrated on many 

ordinary 3 × 3 convolution. If  these ordinary 3 × 3 convolution can be modified, the parameter quantity and 

volume of the whole model can be greatly reduced. 

In this paper, the deep separable convolution block (Sandler et al., 2018)  in the MobileNet network is 

used to replace the ordinary 3 used in the enhanced feature extraction network PANet in the original YOLOv4 

× 3, the overall parameters of the model are further reduced, and the enhanced extraction of image edge 

features by the model is also improved. At this time, the YOLOv4 network structure after two-step optimization 

is shown in Figure 3. 

 

Fig.3 - Optimized YOLOV4 Network Structure 
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As shown in Table 3, by comparing and analyzing the parameters of the optimized PANet model, it can 

be seen intuitively that the parameters of the optimized PANet model are nearly 70% less than the total 

parameters of the model after the backbone feature extraction network is replaced, which basically meets the 

deployment requirements of mobile devices. 

Table 3 

 Parameter Quantities after PANet Model Optimization 

Model name 
Model parameters after backbone 

network replacement 

Model parameters after 

optimizing PANet 

MNV1-YOLOv4 41,005,757 12,754,109 

MNV2-YOLOv4 39,124,541 10,872,893 

MNV3-YOLOv4 40,043,389 11,791,741 

 

 

Alpha parameter channel adjustment 

In order to further reduce the volume of the model, this paper modifies the number of channels by 

adjusting the alpha parameter value, and sets the alpha parameters for the number of channels such as 128, 

256, 512 and 1024 in the model, replacing (128 * alpha) with 128 channels, replacing (256 * alpha) with 256 

channels, replacing (512 * alpha) with 512 channels and replacing (1024 * alpha) with 1024 channels to 

complete the replacement operation. Next, you can directly set and change the alpha parameter according to 

your needs. The smaller the alpha parameter setting, the fewer channels of the whole model will be. 

Through the replacement of backbone feature extraction network and PANet, strengthen the 

modification of feature extraction network and the application and setting of alpha parameters. Select the 

backbone feature extraction network to be used in mobilenetv1, mobilenetv2 and mobilenetv3, which is 

represented by backbone parameters. The alpha parameter is 1 by default (setting the alpha parameter to 1 

means that the number of channels of the whole model has not been adjusted). The optional range is set to 

0.25, 0.5, 0.75 and 1.0. Continuous comparison is made within this range. The comparative analysis of the 

parameters of the optimized and improved model is shown in Table 3. The total parameters of the original 

YOLOv4 model are 64429405. Through the reconstruction and optimization of the YOLOv4 model, the 

changes of the parameters of the whole model are shown in Table 4. 

 

Table 4 

 Comparative Analysis of the Number of Model Parameters after Improvement and Optimization 

Model name 

Model 

parameters 

after backbone 

network 

replacement 

Model 

parameter 

quantity after 

optimizing 

PANet (Alpha 

parameter is 

1.0 by default) 

Model 

parameter 

quantity with 

Alpha 

parameter = 

0.75 

Model 

parameter 

quantity with 

Alpha 

parameter = 

0.5 

Model 

parameter 

quantity with 

Alpha 

parameter = 

0.25 

MNV1-YOLOv4 41005757 12754109 7299789 3356125 680381 

MNV2-YOLOv4 39124541 10872893 6257773 2370541 476568 

MNV3-YOLOv4 40043389 11791741 6315309 2823754 568156 

 

 
Evaluating indicator 

For the wheat ear detection model, the most important is the AP value, FPS and the size of model 

parameters. The AP value mainly reflects the relationship between the accuracy and recall of the model. The 

higher the AP value, the better the overall detection effect of the model. FPS represents the image detection 

speed, and the model parameter refers to the size of the parameters in the internal network of the model. 
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(1) AP (average precision) and PR curve 

Because the object category detected in the whole experiment is only wheat, mAP is not used as an 

index in the model test effect, but AP value is used to measure the performance of target detection algorithm. 

AP value refers to the average accuracy rate of a certain category. AP value is the combination of different 

precision and recall points. The larger the area under the PR curve, the larger the AP value, and the higher 

the average accuracy rate of the model, the better the performance of the model and the better the effect of 

the model in detecting wheat ears.  

 

AP value is defined as equation (1). 

                                                      AP = ∫ P(R)dR = ∑ P(k)∆R(k)n
k=0

1

0
                                                     (1) 

(2) TP and FP 

TP is used to represent the number of positive samples predicted by the model and actually positive 

samples, and FP is used to represent the number of positive samples predicted by the model and actually 

negative samples. 

(3) FPS (frames per second) image detection speed 

FPS simply means that it can detect the number of pictures in one second. FPS can well evaluate the 

real-time performance of model detection, in seconds. Generally, the speed is measured by the number of 

frames of input video processed in one second. The higher the FPS, the better the real-time performance of 

the trained model. 

(4) Model size and parameter quantity 

The unit of model size is usually expressed in megabytes (MB), which is also one of the important factors 

of wheat ear target detection and evaluation indicators. The target detection model includes backbone network 

architecture information, optimization information and parameter information. If the model is too large to affect 

the portability of transplantation, the unit of parameter is usually expressed in "pieces".  

 
TRAINING AND EVALUATION  

The field wheat ear enhancement data set selected in this paper has a total of 5632 wheat ear images, 

all of which are labeled with labelimg to generate a VOC format data set (Everingham et al., 2010) , in which 

the number of bounding box wheat ears is 242309.  

The data set is divided into training set, test set and verification set according to 8:1:1, which are 4505, 

563 and 564 respectively. The wheat ear detection model was trained and tested on NVIDIA geforce RTX 

2080 Ti GPU. 

 

Model training 

Set the number of iterative training to 100 rounds, of which the first 50 rounds are frozen training. Freeze 

some features to extract the weight of the network, so that the network weight of the frozen part is not updated, 

and other parts of the network are trained first. After 50 rounds of thawing, the network layer to be trained shall 

be trained. Freeze the number of pictures entered in each training batch_size is set to 8 and the learning rate 

is 1e-3. Unfreeze training number of pictures input each time batch_size is set to 6 and the learning rate is 5e-

5. The training learning rate adopts the adjustment strategy of linear attenuation, that is, if the loss value does 

not decrease after 5 epochs, the learning rate becomes one-half of the original.  

During the training process, the model is constantly updated and adjusted, and the parameters are set 

to save the best model every 5 epochs. Finally, after continuous iterative training, the model structure and 

parameters are saved to obtain the wheat ear real-time detection model. If the loss value of the model does 

not decrease under 10 consecutive epochs, it indicates that the model has fitted the data, and the model will 

automatically stop training. 

 

RESULTS AND ANALYSIS 

It can be seen from Figure 4 that the five models can detect wheat ears in different growth periods, 

varieties, light and dark, and the confidence values are not different. When the alpha coefficient is adjusted to 

0.25, the effect of the prediction model is the worst, and there are many missed errors, which is directly due to 

the lack of model parameters. 
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Fig.4 - Some Forecast Results 

Figure a shows the test results of wheat ears under insufficient light; Figure b shows the test results of wheat ears under sufficient light ; 
Figure c shows the detection results of dark light and only part of wheat ears in the image 

 

Table 5 

 Comparative Analysis of Wheat Spike Detection Models 

Target detection Model 

Average 

accuracy 

AP（%） 

Image 

detection 

speed 

FPS

（Frame/s） 

Model size

（MB） 

Model parameter 

quantity（PCs.） 

YOLOv4 76.74 13.03 751.2 64,429,405 

MNV1-YOLOv4-Alpha=1 74.83 22.52 145.1 12,754,109 

MNV2-YOLOv4-Alpha=1 73.65 23.64 110.9 10,872,893 

MNV3-YOLOv4-Alpha=1 76.45 24.82 124.2 11,791,741 

MNV1-YOLOv4-Alpha=0.25 62.8 44.69 10.4 680,381 

 
 

It can be seen from table 5 that the AP value of YOLOv4 detection model is higher than that of the 

improved model, which is 1.91, 3.09 and 0.29 percentage points higher than mnv1-YOLOv4-alpha = 1, mnv2-

YOLOv4-alpha = 1, mnv3-YOLOv4-alpha = 1 and mnv1-YOLOv4-alpha = 0.25 respectively.  

On the premise of sacrificing part of the accuracy, the detection speed and model parameters of the 

model have been highly optimized and improved. Mnv1-YOLOv4-alpha = 0.25 model pursues the ultimate 

detection speed and minimal volume, resulting in low AP of the model, but it provides a reference for the 

transplantation of the model to embedded device terminals in the future.  

The optimized model has been greatly optimized in terms of detection speed and model volume, and 

the accuracy sacrifice is small. 
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Fig. 5 - P-R Curve 

 

Fig. 5 (a-e) shows the P-R curves of YOLOv4, MNV1-YOLOv4-Alpha = 1, MNV2-YOLOv4-Alpha = 1, 

MNV3-YOLOv4-Alpha = 1 and MNV1-YOLOv4-Alpha = 0.25. The confidence of the model is set to 0.5 and 

the IOU is set to 0.3 to obtain the AP values of five wheat ear detection models. 

Figure 6 shows the TP and FP results of five wheat ear detection models, which are obtained from 563 

pictures in the test set. The number of frames manually labeled in 563 pictures is 13399, (a-e) respectively 

represents the TP / FP results of five models: YOLOv4, MNV1-YOLOv4-Alpha = 1, MNV2-YOLO4-Alpha = 1, 

MNV3-YOLOv4-Alpha = 1 and MNV1-YOLOv4-Alpha = 0.25. 

 

 
Fig. 6 - TP/FP of Wheat Spike Detection Model 

（a） （b） 

（c） （d） 

（e） 

（a） （b） 

（c） 
（d） （e） 
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It can be concluded from Fig.6 that except for figure (e), the TP values of other optimized models are 

similar, but the number of false detections of the model changes greatly. Among them, the number of false 

detections of mnv3-YOLOv4-alpha = 1 model is 152 less than that of the original YOLOv4 model, indicating 

that the performance of the optimized model has been effectively improved compared with the original YOLOv4 

model. 

 

CONCLUSIONS 
In this paper, MobileNet series backbone network, deep separable convolution module and alpha channel 

number dynamic adjustment technology are used to improve and optimize the YOLOv4 model, and it is applied 

to the field wheat ear detection and counting task. When the detection accuracy is very close, the detection 

speed of the optimized detection model is increased by two times, and the volume of the model is reduced to 

one fifth. At the expense of small accuracy, the model can adapt to the rapid detection and counting tasks of 

wheat ears in the field under different illumination, angles and growth periods, provide support for agricultural 

breeding experts to estimate yield quickly and accurately, and provide possibility for the transplantation and 

deployment of mobile terminals. 
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